质谱入门----常见的样品分离方法和样品递送方法
----常见的样品分离方法和样品递送方法
1.气相色谱(GC)
可能对很多人来说,第①次接触质谱是将其作为气相色谱的检测器。GC/MS联用仪类型的范围已大大扩展,超越早期仪器设计的范围,在使用中满足日渐严格的法规要求,像环境分析、食品安全筛查、代谢组学,以及包括法医学、毒理学和药物筛查的临床应用。在过去,两种类型的质谱主导着GC/MS分析:扇形磁场和单四极杆质谱仪。对于前者,可提供高分辨率和准确的质量分析,用于有*灵敏度要求的分析中。后者适合目标化合物的常规分析。
YL6500GC气相色谱仪
2.液相色谱(LC)
这是一项革命性的技术,为大约80%不能采用GC分析的化学物质提供了分析途径,在近几十年来促进了质谱技术的显著提高。少数几个模型被挑出来,开始实现MS与LC联用。可以说LCMS联用开始于1970年代,在1990年代早期,我们今天所熟知的LCMS技术成熟起来。很多现在我们使用的装置和技术都直接来自那个时候。
在1900年代早期,俄guo植物学家Mikhail S.Tswett定义了液相色谱技术。他的研究工作主要是分离从植物萃取的叶色素,在他的研究中,他用溶剂冲洗装填微粒的柱子。这是液相色谱zui简单的形式,被测物溶解的溶液(流动相或浓缩相)与溶液流过的装填颗粒的床体(固定相)之间存在竞争作用,液相色谱就是依靠这种可预测、不断再现且具有很高精确性的相互作用实现分离。近年来,在色谱柱中装填各种功能性组分,以及能够准确传送流动相的溶剂输送系统的发展,使得LC成为很多分析行业的支柱。
YL9100液相色谱仪
首字母缩略词HPLC是由Csaba Horváth在1970年提出,表明对液相色谱填充柱需要施加高压,以引起液体流动。从那以后,液相色谱的效能不断提高,较小颗粒的填料和较高的选择性上都取得了发展,将首字母缩略词改为高效液相色谱。
2004年,仪器和色谱柱技术的进一步发展极大地提高了液相色谱的分离度,速度和灵敏度。具有较小颗粒(1.7微米)的色谱柱和旨在提供15,000 psi(1,000 bar)流动相的专门功能的仪器已被称为UPLC技术,代表了 “超高效液相色谱”。1970年代,诸如约翰·诺克斯(John Knox)这样的调查人员预言了当前技术中所包含的大部分内容。诺克斯预测jia粒径为1-2μm,色谱法对摩擦热具有热敏感性。在开发可广泛使用的UPLC的过程中,必然遇到了能够开发出坚固,均匀的小颗粒的技术。
------ 责任编辑:瑞利祥合--分析仪器采购顾问
版权所有(瑞利祥合)转载请注明出处
免责声明
- 凡本网注明“来源:化工仪器网”的所有作品,均为浙江兴旺宝明通网络有限公司-化工仪器网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其他方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:化工仪器网”。违反上述声明者,本网将追究其相关法律责任。
- 本网转载并注明自其他来源(非化工仪器网)的作品,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。
- 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。